If it's not what You are looking for type in the equation solver your own equation and let us solve it.
26t-4.9t^2=0
a = -4.9; b = 26; c = 0;
Δ = b2-4ac
Δ = 262-4·(-4.9)·0
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-26}{2*-4.9}=\frac{-52}{-9.8} =5+1/3.2666666666667 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+26}{2*-4.9}=\frac{0}{-9.8} =0 $
| 7x+15=2x+40 | | 2x+3√x−20=0 | | 54=-x-2x | | 4.3x-4=5.3x+11 | | 2-5c=10 | | c-1/4=-3 | | 0=v+19= | | 12+4-6x=3(2X+4/3 | | 5(x+1)-2(x-2)=3 | | 17x+13=64 | | 12+4(8-7x)=24-18x | | 8f−23=9 | | -16t^2+60t-64=0 | | 1/9c+5/6=1/2-1/3c | | 4x-8+x+10=6(x+2) | | 19c+56=12-13c | | 2x+4 +3x=4 | | 5x+6=(-4) | | 3^x-5=9^x=4 | | -3(-x+2)-4x+3=−3 | | 4p-12-p=-32 | | 6^y=42 | | 5r–30=30+2r | | -16t^2+64t+2-64=0 | | n2+8=9n | | 9v−8.1=9.9 | | 9=1+(x/7) | | 7x2-35x=0 | | 0.37589(2a+4=-24 | | 4(3x+1)=2(10x-7) | | 2x+14-5x=11-3x+3 | | 5x+2/3=-4 |